Как получить энергию из молния. Грозовая энергетика

Гроза - атмосферное явление, при котором в кучевых облаках, находящихся на высоте 7 -15 км, возникают многократные искровые электрические разряды - молнии, сопровождающиеся громом, ливнями, градом и усилением ветра. Согласно современным представлениям, электризация облаков происходит за счет трения кристалликов льда о смесь водяного пара и мельчайших водяных капелек. Разделение электрических зарядов и образование электрического поля происходит только при интенсивных вертикальных восходящих и нисходящих течениях.
Для более ясного проблемы использования энергии грозовых разрядов, кратко остановимся на основных современных взглядах на грозовые явления. В настоящее время не решен окончательно вопрос, за счет чего получают заряд капельки воды и кристаллики льда в грозовых облаках. Одна группа ученых считает, что капельки и кристаллы льда захватывают заряд из воздуха, другая группа считает, что они заряжаются за счет обмена зарядом при контакте между собой. В результате экспериментальных исследований установлено, что от нижней кромки грозового облака и до слоя с температурой 00C простирается водная часть облака. В области с температурой от 00C до 150C сосуществуют вода и лед, и при температуре ниже 150C облако обычно состоит только из ледяных кристаллов. Капельная часть облака, в основном, имеет отрицательный заряд, а ледяная его часть имеет положительный заряд. В средних широтах центр отрицательного заряда грозового облака располагается на высоте около 3 км, а центр положительного примерно на высоте 6 км. Напряженность электрического поля внутри грозового облака составляет 100-300 вольт/см, но перед разрядом молнии в отдельных небольших объемах она может доходить до 1 600 вольт/см. Грозовой процесс невозможен без разделения зарядов в облаке путем конвекции. Поле конвекции в облаках распадается на несколько ячеек (в некоторых грозах до 8). Каждая конвективная ячейка проходит стадию зарождения, зрелости и затухания. В стадии зарождения во всей конвективной ячейке преобладают восходящие течения. В отдельных случаях скорость восходящих потоков может достигать 30 м/сек, однако в основном она составляет 10-12 м/сек. Зрелая конвективная ячейка характеризуется развитием восходящих и нисходящих потоков, электрической активностью (разрядами молний) и выпадением осадков. Такая ячейка имеет горизонтальный диаметр 2-8 км и простирается в высоту до уровня с температурой 40C. В стадии затухания во всей конвективной ячейке преобладают слабые нисходящие течения с уменьшением электрической активности и колличества выпадающих в единицу времени осадков. Полный цикл жизни конвективной ячейки составляет около часа,
длительность стадии зрелости равна 15-30 минутам, стадии затухания около 30 минут.
Гроза, продолжающаяся несколько часов, является результатом деятельности нескольких конвективных ячеек.
Объем грозового облака, состоящего из смеси капель и ледяных кристаллов, достигает от сотен до нескольких тысяч кубических километров. Масса водно-ледяных частиц, при этом объеме, составляет примерно 106 - 107 тонн.
Потенциальная энергия грозового облака составляет от 1013 до 1014 Дж и достигает энергии термоядерной мегатонной бомбы. Молнии, обычно линейные, длиной несколько километров, диаметром десятки сантиметров, относятся к без электродным разрядам, так как зарождаются в скоплении заряженных частиц, преобразуя электрическую энергию в тепловую. По условиям развития грозы разделяются: на внутримассовые и на фронтальные. Внутримассовые грозы над материком возникают в результате местного прогревания воздуха от земной поверхности, что приводит к развитию в нём восходящих токов местной конвекции и к образованию мощных кучево-дождевых облаков. Поэтому внутримассовые грозы над сушей развиваются преимущественно в послеполуденные часы. Над морями наиболее благоприятные условия для развития конвекции наблюдаются в ночные часы, и максимум в суточном ходе приходится на 4 - 5 часов утра.
Фронтальные грозы возникают на фронтальных разделах, т. е. на границах между тёплыми и холодными воздушными массами и не имеют регулярного суточного хода. Над материками умеренного пояса они наиболее часты и интенсивны летом, в засушливых районах - весной и осенью. Зимние грозы возникают в исключительных случаях - при прохождении особенно резких холодных фронтов. Вообще зимняя гроза- явление очень редкое.
Грозы на Земле распределены весьма неравномерно: в Арктике они возникают раз в несколько лет, в умеренном поясе в каждом отдельном пункте бывает несколько десятков дней с грозами. Тропики и экваториальная область являются самыми грозообильными районами Земли, и получили название "пояс вечных гроз". В районе Бютензорга, на острове Ява, грозы буйствуют 322 дня в году. В пустыне Сахара гроз вообще почти не бывает. Электрическое строение типичного грозового облака биполярно - положительные и отрицательные заряды располагаются в верхней и нижней частях облака соответственно. Вблизи основания облака под отрицательным зарядом обычно располагается дополнительный
положительный заряд. В зависимости от условий (в частности, от широты местности) возможны различные значения верхнего положительного и нижнего отрицательного зарядов.
Электрическое поле в облаках обусловлено распределением объемных зарядов, создаваемых всеми носителями зарядов в данном облаке. В грозовых облаках происходит весьма быстрое накопление больших объемных зарядов. Средняя плотность объемного заряда может составлять порядка (0,3-3)10- Кл/м. Области с максимальной плотностью зарядов имеют размеры порядка нескольких сотен метров. В таких локальных объемах облака создаются условия, благоприятные для образования молний. По современным представлениям наиболее часто встречаются объемы с максимальной плотностью зарядов (зоны неоднородности) размером 200-400 м. Процесс развития наземной молнии состоит из нескольких стадий. На первой стадии в зоне, где электрическое поле достигает достаточной величины, начинается ударная ионизация воздуха. Свободные электроны, которые всегда имеющиеся в небольшом количестве в воздухе, под воздействием электрического поля приобретают значительные скорости по направлению к земле и, сталкиваясь с атомами воздуха ионизируют их. Таким образом, возникают электронные лавины, переходящие в нити электрических разрядов, представляющие собой хорошо проводящие каналы, которые сливаясь, дают начало яркому термоионизированному каналу с высокой проводимостью - ступенчатому лидеру молнии. Движение лидера к земной поверхности происходит ступенями в несколько десятков метров, со скоростью примерно 510 м/сек, после чего его движение приостанавливается на несколько десятков микросекунд, а свечение сильно ослабевает. В последующей стадии лидер снова продвигается на несколько десятков метров. Яркое свечение охватывает при этом все пройденные ступени; затем следуют снова остановка и ослабление свечения. Эти процессы повторяются, при движении лидера до поверхности земли. По мере продвижения лидера к земле напряжение на его конце усиливается и под его действием из выступающих на поверхности Земли предметов выбрасывается ответный стример, соединяющийся с лидером. В заключительной стадии, по ионизированному лидером каналу следует главный разряд молнии. Главный разряд характеризующийся токами от десятков до сотен тысяч ампер, яркостью, заметно превышающей яркость лидера, и большой скоростью
о
продвижения, вначале доходящей примерно до 10 м/сек, в конце уменьшающейся до значений 107 м/сек. Температура канала при главном разряде может превышать 25 000 0С. Длина канала 1-10 км, диаметр несколько сантиметров. После прохождения импульса тока, ионизация канала и его свечение ослабевают. На рисунке 2.20. показаны три стадии развития молнии. На этом рисунке: 1- грозовое облако; 2 - канал ступенчатого лидера; 3 - корона канала; 4 - импульсная корона на головке канала; 5 - главный разряд. Принципиально возможны следующие основные пути получения электроэнергии из грозовых разрядов.
Еще в 1928-1933 годы на горе Дженеросо в Швейцарии на высоте 80 м над земной поверхностью подвешивалась металлическая решетка. Во время гроз эта решетка собирала заряд, достаточный для поддержания в течение 0,01 сек электрической дуги длиной в 4,5 м, что соответствовало силе тока в несколько десятков тысяч ампер и разности потенциалов порядка 1 миллиона вольт. Вначале предполагалось получаемое на этой
установке напряжение использовать для ускорения заряженных частиц в ускорителях. Однако от этой мысли пришлось отказаться ввиду сильной

Рис. 2.20. Три стадии развития молнии

изменчивости электрического состояния грозовых облаков и невозможности пока его регулировать. Попытки использовать протекающий во время гроз в поднятых высоко над земной поверхностью антеннах электрический ток для питания ламп накаливания также пока не дали экономически выгодного эффекта.
Известны опыты, когда в результате глубинных взрывов в море, поднимавших фонтаны воды на высоту около 70 метров под грозовым облаком, происходили разряды облаков в море. Также практически были проведены разряды грозовых облаков на поверхность земли (моря) с помощью проволоки, которая доставлялась к облаку ракетой. Обычно разряд происходил, когда ракета поднималась на высоту порядка 100 м. Этого оказывалось достаточным, чтобы разрядить на землю грозовое облако с высотой нижней границы около километра. Были также попытки использовать в целях создания канала для молнии пучок протонов, полученных на синхротроне, а также с помощью лазеров. Основными недостатками указанных методов являются ряд чисто технических трудностей. Имелись проекты рассеивания в облаках металлических или металлизированных пластинок и нитей, играющих роль проводников короткого замыкания и одновременно микроразрядников, на которых вследствие наличия в облаке собственного электрического поля создается падение потенциала, достаточное для коронного разряда. Опыты по засеву облаков кристаллизующими реагентами с целью изменения их электрического состояния показали, что при соответствующих условиях

можно вызвать интенсивную электризацию облака, и один из путей управления электрическим состоянием грозовых облаков связан с управлением процессом кристаллизации. Но результаты подобных
воздействий на возможность подучения разряда большой мощности, пока недостаточно определены.
Российские энергетики предложили способ использования энергии молний, заключающийся в улавливании зарядов молнии через молниеприемники, электрически соединенные с токоотводом, заземленные через средство отбора энергии молнии, и утилизации электрической
энергии молний на общей накопительной емкости, при этом дополнительно инициируют разряды молнии посредством, например, лазерных излучателей, создающих зоны безэлектродного электрического пробоя воздуха для возбуждения устойчиво развивающегося лидера электрического искрового разряда молнии, а отвод энергии осуществляют через токоотвод, выполненный из резонансных контуров LC-фильтров с диодными мостами.
Электрическая схема, предложенного устройства, показана на рисунке 3.20. На этом рисунке: 1- молниеприемники; 2 - токоотвод; 3- трехзвенные резонансные LC-фильтры; 4- общая накопительная емкость; 5- автоматический переключатель; 6 -обнуляющее сопротивление; 7 -отвод к потребителю. Каждый молниеприемник выполнен в виде подвешенной над землей металлической сетки, закрепленной на изоляторах. Токоотвод выполнен из более чем двух соединенных параллельно, последовательно связанных каскадов D, обеспечивающих понижение тока грозового разряда. Каждый каскад выполнен из трехзвенных резонансных LC-фильтров, соединенных между собой общей индуктивной связью. Общая индуктивная связь образована из последовательно соединенных трех обмоток дросселя, а на выходе каждого каскада подключен соответствующий мостовой выпрямитель. При этом выходы мостовых выпрямителей соединены между собой параллельно и подключены к общей накопительной емкости СН. «Плюсовые» выходы через выпрямительные диоды подключены к пластине общей накопительной емкости Сн. «Минусовые» выходы подключены к другой пластине накопительной емкости СН, выход с СН подключен к системе потребителя. На выходе общей накопительной емкости СН установлен автоматический переключатель для соединения с потребителем или
сопротивлением, обнуляющим накопленный заряд с общей накопительной емкости.
Так же предлогалось устройство, в котором в качестве молниеприемника используется вертикальная токопроводящая изолированная от земли труба, внутрь которой вниз дном вставлен толстостенный диэлектрический стакан так, чтобы верхняя часть трубы возвышалась над краями стакана. На внутреннюю поверхность стенок стакана нанесено заземленное токопроводящее покрытие. Труба- молниеприемник электрически соединена с одним концом первичной обмотки трансформатора, другой конец которой заземлен. Индуктивность первичной обмотки и емкость, сформированная токопроводящей трубой, стенками стакана и токопроводящим покрытием, образуют параллельный колебательный контур. Разряд молнии на трубу-молниеприемник инициируется протяженным оптическим пробоем, который формируется пучком импульсного инфракрасного лазера. Конфигурацию и направление греющего пучка формирует управляемое дихроичное зеркало,
расположенное внутри стакана. Это зеркало одновременно работает в составе системы оптического сканирования атмосферы, необходимой для выявления известным методом оптической локации зон с критическими градиентами напряжения в нижней части грозовых облаков. Энергия, снимаемая с вторичной обмотки трансформатора, используется для питания всех систем устройства, и часть ее может передаваться потребителям. Устройство для накопления электрической энергии. Устройство, которое позволяет накапливать электрическую энергию, выделяемую в молниеотводе при ударе в него молнии, а также извлекать ее избыток из атмосферы между разрядами молний, показано на рисунке 4.20. На этом рисунке: 1- металический громотовод; 2 - тороидальные катушки
индуктивности; 3 -согласующие элементы; 4- заземление. Как видно из приведенного рисунка, это запатентованное устройство, содержит вертикально установленный, заземленный громоотвод. Причем, громоотвод выполнен в виде металлического проводника, вблизи которого расположено одно или несколько элементов для съема электрической энергии.
Элемент для съема электрической энергии содержит катушку индуктивности,
полупроводниковый элемент и емкость, соединенные последовательно с образованием единого электрического контура. В этом устройстве катушка индуктивности размещена ортогонально любой плоскости, проходящей через ось громоотвода, и выполнена в виде тороида, ось симметрии которого совпадает с осью громоотвода.

Китайские ученые из института атмосферной физики разработали несколько иную технологию использования энергии молнии. Для захвата молнии будут использоваться оснащенные специальными громоотводами ракеты, которые будут запускать в центр грозового облака. Ракета "YL-1" должна стартовать за несколько минут до удара молнии. "Проверки показали, что точность запусков составляет 70%", - сообщили разработчики аппарата. Энергия молнии, а также производимое ей электромагнитное излучение будут использоваться для генной модификации сельскохозяйственных пород и производства полупроводников. Кроме того, новая технология позволит значительно снизить экономический ущерб от гроз.
Американская компания Alternative Energy Holdings (Alt-Holding), предложила еще один, способ использования даровой энергии. Специалисты компании утверждают, что им удалось разработать способ сбора и утилизации энергии, возникающей во время электрических разрядов в грозовых облаках. Проект получил название «Сборщик молний» (Lightning Harvester).
Начиная с 2006 года издание eVolo стало проводить ежегодный конкурс eVolo Skyscraper Competition, в котором принимают участие архитекторы, проектирующие непросто высотные здания, а небоскребы строящиеся по последним технологиям и с широким использованием самых современных материалов. Кроме того организаторы конкурса оценивают представленные проекты и с точки зрения их экологичности, которой уделяется особое внимание. Так, в нынешнем году на Evolo Skyscraper Competition 2011 призовые места заняли проекты «LO2P Recycling Skyscraper» (небоскреб-утилизатор в Индии), «Flat tower» (альтернативная энергетика) и гидротехническая плотина, совмещающая в себе электростанцию, галерею и аквариум. На этом же конкурсе группой архитекторов и инженеров из Сербии был представлен неординарный проект небоскреба производящего водород с помощью «небесного» электричества. Идея сербский команды оказалась настолько интересной, что проект Хидра был отмечен поощрительной премией, но вот занять одно из призовых мест. На самом деле, небоскреб Хидра представляетсобой проект высотного строения, которое будет ловить молнии из проходящих в районе грозовых фронтов. Далее предпологается использовать их энергию для процесса разделения (электролиза) обычной воды на составляющие - водород и кислород. Таким образом, это строение будет с одной стороны служить источником чистой энергии, а с другой, станет еще одним поставщиком кислорода в атмосферу Земли.
Учитывая непредсказуемость и непостоянство молний, авторы проекта предложили несколько решений, которые помогут повысить производительность «небоскреба» Хидра. Чтобы притягивать к себе как можно большее число грозовых разрядов, конструкцию необходимо установить в тех регионах планеты, где наблюдается наибольшее число молний. К таким областям относятся некоторые районы, находящиеся на территории США (штат Флорида), Венесуэлы, Колумбии, Индии (в северной части этих стран), Индонезии (полуостров Малакка) и Конго (Африка). В этих районах на каждый квадратный километр территории приходится от 50-70 и более ударов молний ежегодно. Кроме правильного выбора места под строительство, повысить вероятность удачной охоты за молниями поможет возведение проекта Хидра на открытой местности. Поэтому, если небоскреб будет располагаться в крупном городе, он должен стать самым высоким строением в мегаполисе. Иначе часть молний будет просто притягиваться соседними более высокими небоскребами или башнями. Как, например, это наблюдается с Эмпайр-стейт-билдинг (самое высокое здание Нью-Йорка) только в который каждый год ударяет около 20 молний.
Помимо сложности заранее предсказать, сколько же молний сможет улавливать сербский «небоскреб», у проекта существует и масса других трудноразрешимых проблем. Это и большие рабочие температуры (до 27 000 °C) и огромная сила тока (до 200000 А) разрядов молний, которые будут предъявлять высочайшие требования к используемым материалам, и также необходимость создания конденсаторов огромной емкостью и с еще невиданными характеристиками.
Однако прежде, чем атмосферное электричество попадет в промышленную сеть, оно должно быть преобразовано в промышленный стандарт: переменный ток частотой 50 - 60 герц с напряжением 220 - 550 вольт (для энергосетей разных стран эти параметры отличаются). То есть, не достаточно просто нгаправить разряд молнии на накопитель. В разное время предлагались разные решения этой проблемы, в том числе и подземные водяные резервуары. Под действием энергии электрического разряда, вода должна превращаться в пар, который, по мысли авторов патента (а такая схема запатентована в США в 60 годы прошлого века) должен вращать лопатки турбин, как на классических тепловых и атомных станциях. Но КПД таких генераторов крайне не велик. В настоящее время разработаны мощные электрические конденсаторы - накопители большой емкости, способные месяцами хранить накопленную энергию и преобразователи переменного тока на быстродействующих тиристорах, КПД которых приближается к 85%. Вторая проблема заключается в относительной непредсказуемости гроз и неравномерном их распределении. Конечно, наибольшая грозовая активность отмечается ближе к экватору, но возникающие в этих широтах разряды чаще всего происходят не между грозовым облаком и землей, а между облаками или частями облака. Конечно, в Центральной Африке есть обширная зона, где на квадратный километр приходится более 70 молний в год. Есть такие зоны и в США: в штатах Колорадо и Флорида. Но все-таки это достаточно локальные районы. Между тем, атмосферное электричество теоретически, доступно в любой точке планеты.
Специалисты, работающие с американским спутником «Миссия измерения тропических штормов» (Tropical Rainfall Measuring Mission - TRMM), опубликовали отчет об одном из своих недавних достижений. Проведя многолетние наблюдения, TRMM составил мировую карту частоты молний, в соответствии с числом ослепительных разрядов, возникающих над каждым квадратным километром данной местности за год. В центральной части Африканского континента есть зона, где на квадратный километр приходится более 70 молний в год. Именно там запланировано строительство «молниевого» завода. При этом разработчики считают, что электростанция « на молниях» окупится за 4-7 лет.
Следует отметить, что, несмотря на достаточно хорошо изученную природу образования и формирования грозовых разрядов, со временем появляется новые экспериментальные данные. Так, в 1989 году был обнаружен их новый вид - высотные электрические разряды, или спрайты. Эти разряды образуются в ионосфере и бьют сверху вниз, по направлению к грозовым облакам на расстояние 40-50 км, но исчезают, не достигая их. Еще более странные молнии наблюдали ученые из Тайваньского национального университета имени Чена Куна во время нескольких гроз над Южно - Китайским морем в 2002 году. Разряды атмосферного электричества били не вниз, а вверх - от грозовых облаков в верхние слои атмосферы. Разветвленные молнии имели гигантские размеры: светящиеся зигзаги длиной 80 км уходили ввысь на 95 км. Разряды продолжались менее секунды и сопровождались низкочастотным радиоизлучением.
Контрольные вопросы
Какое природное явление называется «гроза»?
За счет, какого явления происходит электризация облаков?
Каков процесс развития наземной молнии?
Какие, принципиально возможные методы, получения электроэнергии из грозовых разрядов?
Какие устройства, предлогалось использовать в качестве молниеприемника?
В каких районах нашей планеты наблюдается наибольшее число молний?
В каких странах мира начнается использование энергии молний?

25.04.2018

Это направление пока еще можно назвать теоретическим. Его суть состоит в том, чтобы улавливать энергию молний с последующим перенаправлением ее в электросети. Такой источник энергии является возобновляемым, специалисты относят его к альтернативным, иначе говоря, экологически безопасным.

Как мы помним из школьного курса, образование молний представляет собой довольно сложный процесс. Из наэлектризованных облаков по направлению к земле устремляется главный разряд, сформированный электронными лавинами, объединенными в стримеры (разряды). За этим разрядом-лидером образуется горячий ионизированный канал. В свою очередь, по этому каналу в направлении от Земли движется главный разряд молнии, который вырывается с поверхности под действием мощного электрического поля. Процесс протекает молниеносно, повторяясь по несколько раз за долю секунды. Главная задача – уловить этот разряд и направить его в электросеть.

О преимуществах

Небесным электричеством люди заинтересовались очень давно. Стоит вспомнить Бенджамина Франклина, который в своих опытах запускал во время грозы воздушных змеев и в результате понял, что они собирают электрические заряды.

Если говорить об энергии молний, то в одном разряде собрано пять миллиардов джоулей чистейшей энергии, эквивалентной 145 литрам бензина. Ученые рассчитали, что один разряд молнии может обеспечить энергией население Соединенных Штатов на 20 минут. А если учесть, что каждый год по всей Земле ударяет полтора миллиарда разрядов (от 40 до 50 разрядов за секунду), то перспективы открываются поистине потрясающие.

Об экспериментах

Представители компании Alternative Energy Holdings в 2006 году сделали заявление, что ими успешно создан прототип конструкции, при помощи которой можно наглядно показать, как происходит захват молнии и ее преобразование в энергию для бытовых нужд. Как сказали в Alternative Energy Holdings, действующий промышленный аналог способен окупить себя за 4-7 лет, если розничная стоимость энергии будет составлять 0,005 $ за киловатт/час. Но проведенная серия опытов, видимо, не продемонстрировала впечатляющих результатов, и руководители проекта закрыли его. После чего энергия молний и энергия атомной бомбы были поставлены в один ряд (по словам Мартина А. Умани).

Через несколько лет (в 2013 году) сотрудники саунгемптонского университета смоделировали в лаборатории искусственный заряд, совпадающий с параметрами естественных молний. Используя сравнительно простое оборудование, ученые сумели уловить заряд и с его помощью целиком зарядить аккумулятор смартфона за считанные минуты.

О перспективах

Фермы по «отлову» молний пока еще просто мечта. На них можно было бы бесконечно получать дешевую энергию, не нанося вреда экологии. Главная проблема, препятствующая развитию этого направления, заключается в невозможности предсказания места и времени очередной грозы. То есть даже в местах с установленным максимальным числом ударов молний необходимо монтировать большое количество «ловушек».

Есть еще другие проблемы, которые заключаются в следующем:

  • молнии представляют собой кратковременные энергетические всплески длительностью в доли секунды, которые необходимо осваивать очень быстро. Решить эту задачу можно при наличии мощных конденсаторов. Однако такие устройства еще не созданы, а если и будут разработаны в будущем, то окажутся очень дорогими. Не исключено применение и различных колебательных систем с наличием контуров 2 и 3 рода, которые позволяют проводить согласование нагрузки с внутренним сопротивлением генераторов;
  • молнии могут образовываться из энергии, скопившейся в верхней и нижней частях облаков. В первом случае они будут положительными, во втором – отрицательными. Это тоже необходимо учитывать, оборудуя молниевую ферму. Кроме того, для «ловли» заряда со знаком плюс потребуется дополнительная энергия, наглядным доказательством чего служит люстра Чижевского;
  • по своей мощности заряды тоже сильно различаются. У большинства молний данный параметр составляет от 5 до 20 кА, однако у некоторых всполохов может достигать 200 кА. Для бытового использования каждый из разрядов необходимо стандартизировть (50-60 Гц, 220 В);
  • заряженные ионы в кубометре атмосферы имеют низкую плотность, а сопротивление воздуха, наоборот, высокое. Это говорит о том, что для улавливания молний необходимы ионизированные электроды, приподнятые над землей на максимальную величину, однако и они улавливают энергию лишь в виде микротоков. Но если электрод будет расположен слишком высоко (т.е. близко к облакам), то возможно самопроизвольное образование молнии, проще говоря, возникнет мощный и кратковременный всплеск напряжения, создающий риск поломки оборудования.

И все же такие проблемы не останавливают людей, мечтающих создать молниевые фермы. Ведь мечта об укрощении природы и получении доступа к возобновляемым энергетическим ресурсам существует сотни лет и становится все более реальной.

Доктор биологических наук, кандидат физико-математических наук К. БОГДАНОВ.

В каждый момент времени в разных точках Земли сверкают молнии более 2000 гроз. В каждую секунду около 50 молний ударяются в поверхность земли, и в среднем каждый ее квадратный километр молния поражает шесть раз за год. Еще Б. Франклин показал, что молнии, бьющие по земле из грозовых облаков, - это электрические разряды, переносящие на нее отрицательный заряд величиной несколько десятков кулон, а амплитуда тока при ударе молнии составляет от 20 до 100 кА. Скоростная фотосъемка показала, что разряд молнии длится несколько десятых долей секунды и состоит из нескольких еще более коротких разрядов. Молнии издавна интересуют ученых, но и в наше время об их природе мы знаем лишь немного больше, чем 250 лет тому назад, хотя смогли их обнаружить даже на других планетах.

Наука и жизнь // Иллюстрации

Способность электризации трением различных материалов. Материал из трущейся пары, находящийся выше в таблице, заряжается положительно, а ниже - отрицательно.

Отрицательно заряженный низ облака поляризует поверхность Земли под собой так, что она заряжается положительно, и, кода появляются условия для электрического пробоя, возникает разряд молнии.

Распределение частоты гроз по поверхности суши и океанов. Самые темные места на карте соответствуют частотам не более 0,1 грозы в год на квадратный километр, а самые светлые - более 50.

Зонт с громоотводом. Модель продавалась в XIX веке и пользовалась спросом.

Выстрел жидкостью или лазером по грозовой туче, нависшей над стадионом, уводит разряд молнии в сторону.

Несколько разрядов молний, вызванных пуском ракеты в грозовую тучу. Левая вертикальная прямая - след ракеты.

Крупный «ветвистый» фульгурит весом 7,3 кг, найденный автором на окраине Москвы.

Полые цилиндрические фрагменты фульгурита, образованные из оплавленного песка.

Белый фульгурит из Техаса.

Молния - вечный источник подзарядки электрического поля Земли . В начале XX века с помощью атмосферных зондов измерили электрическое поле Земли. Его напряженность у поверхности оказалась равной примерно 100 В/м, что соответствует суммарному заряду планеты около 400 000 Кл. Переносчиком зарядов в атмосфере Земли служат ионы, концентрация которых увеличивается с высотой и достигает максимума на высоте 50 км, где под действием космического излучения образовался электропроводящий слой - ионосфера. Поэтому электрическое поле Земли - это поле сферического конденсатора с приложенным напряжением около 400 кВ. Под действием этого напряжения из верхних слоев в нижние все время течет ток силой 2-4 кА, плотность которого составляет 1-2 . 10 -12 А/м 2 , и выделяется энергия до 1,5 ГВт. И это электрическое поле исчезло бы, если бы не было молний! Поэтому в хорошую погоду электрический конденсатор - Земля - разряжается, а при грозе заряжается.

Человек не чувствует электрического поля Земли, так как его тело - хороший проводник. Поэтому заряд Земли находится и на поверхности тела человека, локально искажая электрическое поле. Под грозовым облаком плотность наведенных на земле положительных зарядов может значительно возрастать, а напряженность электрического поля - превышать 100 кВ/м, в 1000 раз больше ее значения в хорошую погоду. В результате во столько же раз увеличивается положительный заряд каждого волоска на голове человека, стоящего под грозовой тучей, и они, отталкиваясь друг от друга, встают дыбом.

Электризация - удаление "заряженной" пыли. Чтобы понять, как облако разделяет электрические заряды, вспомним, что такое электризация. Легче всего зарядить тело, потерев его о другое. Электризация трением - самый старый способ получения электрических зарядов. Само слово "электрон" в переводе с греческого на русский означает янтарь, так как янтарь всегда заряжался отрицательно при трении о шерсть или шелк. Величина заряда и его знак зависят от материалов трущихся тел.

Считается, что тело, до того как его стали тереть о другое, электронейтрально. Действительно, если оставить заряженное тело в воздухе, то к нему начнут прилипать противоположно заряженные частицы пыли и ионы. Таким образом, на поверхности любого тела находится слой "заряженной" пыли, нейтрализующий заряд тела. Поэтому электризация трением - это процесс частичного снятия "заряженной" пыли с обоих тел. При этом результат будет зависеть от того, на сколько лучше или хуже снимается "заряженная" пыль с трущихся тел.

Облако - фабрика по производству электрических зарядов. Трудно представить, что в облаке находится пара материалов из перечисленных в таблице. Однако на телах может оказаться различная "заряженная" пыль, даже если они сделаны из одного того же материала, - достаточно, чтобы микроструктура поверхности отличалась. Например, при трении гладкого тела о шероховатое оба будут электризовываться.

Грозовое облако - это огромное количество пара, часть которого конденсировалось в виде мельчайших капелек или льдинок. Верх грозового облака может находиться на высоте 6-7 км, а низ нависать над землей на высоте 0,5-1 км. Выше 3-4 км облака состоят из льдинок разного размера, так как температура там всегда ниже нуля. Эти льдинки находятся в постоянном движении, вызванном восходящими потоками теплого воздуха от нагретой поверхности земли. Мелкие льдинки легче, чем крупные, увлекаются восходящими потоками воздуха. Поэтому "шустрые" мелкие льдинки, двигаясь в верхнюю часть облака, все время сталкиваются с крупными. При каждом таком столкновении происходит электризация, при которой крупные льдинки заряжаются отрицательно, а мелкие - положительно. Со временем положительно заряженные мелкие льдинки оказываются в верхней части облака, а отрицательно заряженные крупные - внизу. Другими словами, верхушка грозы заряжена положительно, а низ - отрицательно. Все готово для разряда молнии, при котором происходит пробой воздуха и отрицательный заряд с нижней части грозовой тучи перетекает на Землю.

Молния - привет из космоса и источник рентгеновского излучения. Однако само облако не в состоянии так наэлектризовать себя, чтобы вызвать разряд между своей нижней частью и землей. Напряженность электрического поля в грозовом облаке никогда не превышает 400 кВ/м, а электрический пробой в воздухе происходит при напряженности больше 2500 кВ/м. Поэтому для возникновения молнии необходимо что-то еще кроме электрического поля. В 1992 году российский ученый А. Гуревич из Физического института им. П. Н. Лебедева РАН (ФИАН) предположил, что своеобразным зажиганием для молнии могут быть космические лучи - частицы высоких энергий, обрушивающиеся на Землю из космоса с околосветовыми скоростями. Тысячи таких частиц каждую секунду бомбардируют каждый квадратный метр земной атмосферы.

Согласно теории Гуревича, частица космического излучения, сталкиваясь с молекулой воздуха, ионизирует ее, в результате чего образуется огромное число электронов, обладающих высокой энергией. Попав в электрическое поле между облаком и землей, электроны ускоряются до околосветовых скоростей, ионизируя путь своего движения и, таким образом, вызывая лавину электронов, движущихся вместе с ними к земле. Ионизированный канал, созданный этой лавиной электронов, используется молнией для разряда (см. "Наука и жизнь" № 7, 1993 г.).

Каждый, кто видел молнию, заметил, что это не ярко светящаяся прямая, соединяющая облако и землю, а ломаная линия. Поэтому процесс образования проводящего канала для разряда молнии называют ее "ступенчатым лидером". Каждая из таких "ступенек" - это место, где разогнавшиеся до околосветовых скоростей электроны остановились из-за столкновений с молекулами воздуха и изменили направление движения. Доказательство для такой интерпретации ступенчатого характера молнии - вспышки рентгеновского излучения, совпадающие с моментами, когда молния, как бы спотыкаясь, изменяет свою траекторию. Недавние исследования показали, что молния служит довольно мощным источником рентгеновского излучения, интенсивность которого может составлять до 250 000 электронвольт, что примерно в два раза превышает ту, которую используют при рентгене грудной клетки.

Как вызвать разряд молнии? Изучать то, что произойдет непонятно где и когда, очень сложно. А именно так в течение долгих лет работали ученые, исследующие природу молний. Считается, что грозой на небе руководит Илья-пророк и нам не дано знать его планы. Однако ученые очень давно пытались заменить Илью-пророка, создавая проводящий канал между грозовой тучей и землей. Б. Франклин для этого во время грозы запускал воздушный змей, оканчивающийся проволокой и связкой металлических ключей. Этим он вызывал слабые разряды, стекающие вниз по проволоке, и первым доказал, что молния - это отрицательный электрический разряд, стекающий с облаков на землю. Опыты Франклина были чрезвычайно опасными, и один из тех, кто их пытался повторить, - российский академик Г. В. Рихман - в 1753 году погиб от удара молнии.

В 1990-х годах исследователи научились вызывать молнии, не подвергая опасности свою жизнь. Один из способов вызвать молнию - запустить с земли небольшую ракету прямо в грозовую тучу. Вдоль всей траектории ракета ионизирует воздух и создает таким образом проводящий канал между тучей и землей. И если отрицательный заряд низа тучи достаточно велик, то вдоль созданного канала происходит разряд молнии, все параметры которого регистрируют приборы, расположенные рядом со стартовой площадкой ракеты. Чтобы создать еще лучшие условия для разряда молнии, к ракете присоединяют металлический провод, соединяющий ее с землей.

Молния: подарившая жизнь и двигатель эволюции . В 1953 году биохимики С. Миллер (Stanley Miller) и Г. Юри (Harold Urey) показали, что одни из "кирпичиков" жизни - аминокислоты могут быть получены путем пропускания электрического разряда через воду, в которой растворены газы "первобытной" атмосферы Земли (метан, аммиак и водород). Спустя 50 лет другие исследователи повторили эти опыты и получили те же результаты. Таким образом, научная теория зарождения жизни на Земле отводит удару молнии основополагающую роль.

При пропускании коротких импульсов тока через бактерии в их оболочке (мембране) появляются поры, через которые внутрь могут проходить фрагменты ДНК других бактерий, запуская один из механизмов эволюции.

Почему зимой грозы очень редки? Ф. И. Тютчев, написав "Люблю грозу в начале мая, когда весенний первый гром…", знал, что зимой гроз почти не бывает. Чтобы образовалось грозовое облако, необходимы восходящие потоки влажного воздуха. Концентрация насыщенных паров растет с повышением температуры и максимальна летом. Разница температур, от которой зависят восходящие потоки воздуха, тем больше, чем выше его температура у поверхности земли, так как на высоте нескольких километров его температура не зависит от времени года. Значит, интенсивность восходящих потоков максимальна тоже летом. Поэтому и грозы у нас чаще всего летом, а на севере, где и летом холодно, грозы довольно редки.

Почему грозы чаще над сушей, чем над морем? Чтобы облако разрядилось, в воздухе под ним должно быть достаточное число ионов. Воздух, состоящий только из молекул азота и кислорода, не содержит ионов, и его очень тяжело ионизировать даже в электрическом поле. А вот если в воздухе много инородных частиц, например пыли, то и ионов тоже много. Ионы образуются при движении частиц в воздухе аналогично тому, как электризуются при трении друг о друга различные материалы. Очевидно, что пыли в воздухе гораздо больше над сушей, чем над океанами. Поэтому-то грозы и гремят над сушей чаще. Замечено также, что прежде всего молнии бьют по тем местам, где в воздухе особенно велика концентрация аэрозолей - дымов и выбросов предприятий нефтеперерабатывающей промышленности.

Как Франклин отклонил молнию. К счастью, большинство разрядов молнии происходят между облаками и поэтому угрозы не представляют. Однако считается, что каждый год молнии убивают более тысячи людей по всему миру. По крайней мере, в США, где ведется такая статистика, каждый год от удара молнии страдают около 1000 человек и более ста из них погибают. Ученые давно пытались защитить людей от этой "кары божьей". Например, изобретатель первого электрического конденсатора (лейденской банки) Питер ван Мушенбрук (1692-1761) в статье об электричестве, написанной для знаменитой французской Энциклопедии, защищал традиционные способы предотвращения молнии - колокольный звон и стрельбу из пушек, которые, как он считал, оказываются довольно эффективными.

Бенджамин Франклин, пытаясь защитить Капитолий столицы штата Мериленд, в 1775 году прикрепил к зданию толстый железный стержень, который возвышался над куполом на несколько метров и был соединен с землей. Ученый отказался патентовать свое изобретение, желая, чтобы оно как можно скорее начало служить людям.

Весть о громоотводе Франклина быстро разнеслась по Европе, и его выбрали во все академии, включая и Российскую. Однако в некоторых странах набожное население встретило это изобретение с возмущением. Сама мысль, что человек так легко и просто может укротить главное оружие "божьего гнева", казалась кощунственной. Поэтому в разных местах люди из благочестивых соображений ломали громоотводы. Любопытный случай произошел в 1780 году в небольшом городке Сент-Омер на севере Франции, где горожане потребовали снести железную мачту громоотвода, и дело дошло до судебного разбирательства. Молодой адвокат, защищавший громоотвод от нападок мракобесов, построил защиту на том, что и разум человека, и его способность покорять силы природы имеют божественное происхождение. Все, что помогает спасти жизнь, во благо - доказывал молодой адвокат. Он выиграл процесс и снискал большую известность. Адвоката звали Максимилиан Робеспьер. Ну а сейчас портрет изобретателя громоотвода - самая желанная репродукция в мире, ведь она украшает известную всем стодолларовую купюру.

Как можно защититься от молнии с помощью водяной струи и лазера . Недавно был предложен принципиально новый способ борьбы с молниями. Громоотвод создадут из... струи жидкости, которой будут стрелять с земли непосредственно в грозовые облака. Громоотводная жидкость представляет собой солевой раствор, в который добавлены жидкие полимеры: соль предназначена для увеличения электропроводности, а полимер препятствует "распаду" струи на отдельные капельки. Диаметр струи составит около сантиметра, а максимальная высота - 300 метров. Когда жидкий громоотвод доработают, им оснастят спортивные и детские площадки, где фонтан включится автоматически, когда напряженность электрического поля станет достаточно высокой, а вероятность удара молнии - максимальной. По струе жидкости с грозового облака будет стекать заряд, делая молнию безопасной для окружающих. Аналогичную защиту от разряда молнии можно сделать и с помощью лазера, луч которого, ионизируя воздух, создаст канал для электрического разряда вдали от скопления людей.

Может ли молния сбить нас с пути? Да, если вы пользуетесь компасом. В известном романе Г. Мелвила "Моби Дик" описан именно такой случай, когда разряд молнии, создавший сильное магнитное поле, перемагнитил стрелку компаса. Однако капитан судна взял швейную иглу, ударил по ней, чтобы намагнитить, и поставил ее вместо испорченной стрелки компаса.

Может ли вас поразить молния внутри дома или самолета? К сожалению, да! Ток грозового разряда может войти в дом по телефонному проводу от рядом стоящего столба. Поэтому при грозе старайтесь не пользоваться обычным телефоном. Считается, что говорить по радиотелефону или по мобильному безопасней. Не следует во время грозы касаться труб центрального отопления и водопровода, которые соединяют дом с землей. Из этих же соображений специалисты советуют при грозе выключать все электрические приборы, в том числе компьютеры и телевизоры.

Что касается самолетов, то, вообще говоря, они стараются облетать районы с грозовой активностью. И все-таки в среднем раз в год в один из самолетов попадает молния. Ее ток поразить пассажиров не может, он стекает по внешней поверхности самолета, но способен вывести из строя радиосвязь, навигационное оборудование и электронику.

Фульгурит - окаменевшая молния. При разряде молнии выделяется 10 9 -10 10 джоулей энергии. Большая ее часть тратится на создание ударной волны (гром), нагрев воздуха, световую вспышку и другие электромагнитные волны, и только маленькая часть выделяется в том месте, где молния входит в землю. Однако и этой "маленькой" части вполне достаточно, чтобы вызвать пожар, убить человека и разрушить здание. Молния может разогреть канал, по которому она движется, до 30 000° С, в пять раз выше температуры на поверхности Солнца. Температура внутри молнии гораздо больше температуры плавления песка (1600-2000°C), но расплавится песок или нет, зависит еще и от длительности молнии, которая может составлять от десятков микросекунд до десятых долей секунды. Амплитуда импульса тока молнии обычно равна нескольким десяткам килоампер, но иногда может превышать и 100 кА. Самые мощные молнии и вызывают рождение фульгуритов - полых цилиндров из оплавленного песка.

Слово "фульгурит" происходит от латинского fulgur, что означает молния. Самые длинные из раскопанных фульгуритов уходили под землю на глубину более пяти метров. Фульгуритами также называют оплавленности твердых горных пород, образованные ударом молнии; они иногда в большом количестве встречаются на скалистых вершинах гор. Фульгуриты, состоящие из переплавленного кремнезема, обыкновенно представляют собой конусообразные трубочки толщиной с карандаш или с палец. Их внутренняя поверхность гладкая и оплавленная, а наружная образована приставшими к оплавленной массе песчинками. Цвет фульгуритов зависит от примесей минералов в песчаной почве. Большинство из них имеют рыжевато-коричневый, серый или черный цвет, однако встречаются зеленоватые, белые или даже полупрозрачные фульгуриты.

По-видимому, первое описание фульгуритов и их связи с ударами молнии было сделано в 1706 году пастором Д. Германом (David Hermann). Впоследствии многие находили фульгуриты вблизи людей, пораженных разрядом молнии. Чарльз Дарвин во время кругосветного путешествия на корабле "Бигль", обнаружил на песчаном берегу вблизи Мальдонадо (Уругвай) несколько стеклянных трубочек, уходящих в песок вертикально вниз более чем на метр. Он описал их размеры и связал их образование с разрядами молний. Известный американский физик Роберт Вуд получил "автограф" молнии, которая чуть не убила его:

"Прошла сильная гроза, и небо над нами уже прояснилось. Я пошел через поле, которое отделяет наш дом от дома моей свояченицы. Я прошел ярдов десять по тропинке, как вдруг меня позвала моя дочь Маргарет. Я остановился секунд на десять и едва лишь двинулся дальше, как вдруг небо прорезала яркая голубая линия, с грохотом двенадцатидюймового орудия ударив в тропинку в двадцати шагах передо мной и подняв огромный столб пара. Я пошел дальше, чтобы посмотреть, какой след оставила молния. В том месте, где ударила молния, было пятно обожженного клевера дюймов в пять диаметром, с дырой посередине в полдюйма…. Я возвратился в лабораторию, расплавил восемь фунтов олова и залил в отверстие… То, что я выкопал, когда олово затвердело, было похоже на огромный, слегка изогнутый собачий арапник, тяжелый, как и полагается, в рукоятке и постепенно сходящийся к концу. Он был немного длиннее трех футов" (цитируется по В. Сибрук. Роберт Вуд. - М.: Наука, 1985, с. 285).

Появление стеклянной трубочки в песке при разряде молнии связано с тем, что между песчинками всегда находятся воздух и влага. Электрический ток молнии за доли секунд раскаляет воздух и водяные пары до огромных температур, вызывая взрывообразный рост давления воздуха между песчинками и его расширение, что слышал и видел Вуд, чудом не ставший жертвой молнии. Расширяющийся воздух образует цилиндрическую полость внутри расплавленного песка. Последующее быстрое охлаждение фиксирует фульгурит - стеклянную трубочку в песке.

Часто аккуратно выкопанный из песка фульгурит по форме напоминает корень дерева или ветвь с многочисленными отростками. Такие ветвистые фульгуриты образуются, когда разряд молнии попадает во влажный песок, который, как известно, имеет бo"льшую электропроводность, чем сухой. В этих случаях ток молнии, входя в почву, сразу начинает растекаться в стороны, образуя структуру, похожую на корень дерева, а рождающийся при этом фульгурит лишь повторяет эту форму. Фульгурит очень хрупок, и попытки очистить от прилипшего песка нередко приводят к его разрушению. Особенно это относится к ветвистым фульгуритам, образовавшимся во влажном песке.

Огромные сполохи природной энергии – молнии, давно привлекают внимание людей. После того, как была установлена электрическая природа молний, люди стали подробнее изучать это явление. Естественно, рассматривался вопрос о практическом использовании энергии молний. Для этого, прежде всего, необходимо определить запас энергии молнии.

Максимальная разница потенциалов молнии достигает 50 миллионов вольт, а ток до 100 тысяч ампер. Для расчётов энергии молнии возьмем цифры ближе к средним для большинства молний, а именно: напряжение 20 миллионов вольт и ток 20 тысяч ампер.

При грозовом разряде, электрический потенциал уменьшается до нуля. Поэтому для того, чтобы правильно определить среднюю мощность грозового разряда, в расчётах надо брать половину первоначального напряжения.

Тогда мы имеем мощность электрического разряда:

Получается, что мощность грозового разряда молнии 200 миллионов киловатт. Длительность молнии составляет около тысячной доли секунды, а в каждом часе 3600 секунд. По этим данным можно определить общее количество энергии, которую даёт разряд молнии.

При цене электрической энергии 3 рубля за 1 кВт.ч., стоимость энергии, при условии полного использования всей энергии молнии, составит 166,67 рубля.

На большей части России частота ударов молнии в пределах 2 – 4 в год на квадратный километр, в горных районах до 10 ударов молнии. Из всех видов молний, как источник энергии нас может интересовать только разряд между землёй и электрически заряженными облаками. Для покрытия квадратного километра нужно большое количество молниеотводов. Технически возможно собрать небольшую часть электричества от молнии в высоковольтных конденсаторах. Понадобятся также преобразователи с функцией стабилизации напряжения. Но, как показывает расчёт энергоёмкости конденсаторов , для хранения даже небольшого количества электрической энергии, нужны конденсаторы огромной ёмкости и размеров. Стоимость такого оборудования будет на много порядков дороже стоимости полученной электрической энергии, даже при регулярном, например, ежегодном пополнении энергии разрядами молнии.

Подобные расчёты энергии молнии приводились в технической литературе. Реально получить и использовать, например, на нагрев воды, можно только небольшую часть этой энергии. Основная часть энергии молнии расходуется при искровом разряде на нагрев атмосферы и даже теоретически потребители могут использовать меньшую часть энергии молнии.

Для примера рассчитаем, сколько энергии потребляет на нагрев, например, такое устройство, как громоотвод. Электрическое сопротивление воздушного промежутка, молниеотвода и заземления, которое преодолевает молния при усредненных характеристиках разряда составит:

R = U/I = 20 000 000 В: 20 000 А = 1000 Ом

Расчёт сопротивления проводника громоотвода можно сделать по известной методике, если известны материал, его удельное сопротивление, длина и толщина провода. Но, для нашего примера, будем считать сопротивление проводника равным одному 1 Ом, а сопротивление заземления 4 Ома.

Если сопротивление молниеотвода в тысячу раз меньше, общего сопротивления для молнии, то по закону Ома для участка цепи падение напряжения на участке цепи (громоотводе), прямо пропорционально сопротивлению. А значит мощность, которая выделяется в виде тепла на молниеотводе, будет в тысячу раз меньше общей мощности или количеству энергии, которое выделяется на молниеотводе. В нашем примере это количество энергии будет равно 55,556 Вт.ч., что очень незначительно. Зная теплоёмкость материала молниеотвода и его массу, можно определить, на сколько градусов повысится температура молниеотвода.

Для повышения мощности потребителя, необходимо повысить электрическое сопротивление потребителя. Оптимальным вариантом для источника и потребителя электрической энергии является согласований сопротивлений, когда эти сопротивления равны. Нужно иметь в виду, что при увеличении общего сопротивления токопроводящей цепи уменьшится величина тока, а разность потенциалов останется прежней. Это приведёт к уменьшению общей энергии молнии и снизит без того небольшую вероятность грозового разряда.

Арендный блок

Альтернати́вная энерге́тика - совокупность перспективных способов получения, передачи и использования энергии, которые распространены не так широко, как традиционные, однако представляют интерес из-за выгодности их использования при, как правило, низком риске причинения вреда окружающей среде.

Солнечная энергия

Всевозможные гелиоустановки используют солнечное излучение как альтернативный источник энергии. Излучение Солнца можно использовать как для нужд теплоснабжения, так и для получения электричества (используя фотоэлектрические элементы).

К преимуществам солнечной энергии можно отнести возобновляемость данного источника энергии, бесшумность, отсутствие вредных выбросов в атмосферу при переработке солнечного излучения в другие виды энергии.

Недостатками солнечной энергии являются зависимость интенсивности солнечного излучения от суточного и сезонного ритма, а также, необходимость больших площадей для строительства солнечных электростанций. Также серьёзной экологической проблемой является использование при изготовлении фотоэлектрических элементов для гелиосистем ядовитых и токсичных веществ, что создаёт проблему их утилизации.

Ветряная энергия

Одним их перспективнейших источников энергии является ветер. Принцип работы ветрогенератора элементарен. Сила ветра, используется для того, чтобы привести в движение ветряное колесо. Это вращение в свою очередь передаётся ротору электрического генератора.

Преимуществом ветряного генератора является, прежде всего, то, что в ветряных местах, ветер можно считать неисчерпаемым источником энергии. Кроме того, ветрогенераторы, производя энергию, не загрязняют атмосферу вредными выбросами.

К недостаткам устройств по производству ветряной энергии можно отнести непостоянство силы ветра и малую мощность единичного ветрогенератора. Также ветрогенераторы известны тем, что производят много шума, вследствие чего их стараются строить вдали от мест проживания людей.

Геотермальная энергия

Огромное количество тепловой энергии хранится в глубинах Земли. Это обусловлено тем, что температура ядра Земли чрезвычайно высока. В некоторых местах земного шара происходит прямой выход высокотемпературной магмы на поверхность Земли: вулканические области, горячие источники воды или пара. Энергию этих геотермальных источников и предлагают использовать в качестве альтернативного источника сторонники геотермальной энергетики.

Используют геотермальные источники по-разному. Одни источники служат для теплоснабжения, другие – для получения электричества из тепловой энергии.

К преимуществам геотермальных источников энергии можно отнести неисчерпаемость и независимость от времени суток и времени года.

К негативным сторонам можно отнести тот факт, что термальные воды сильно минерализованы, а зачастую ещё и насыщены токсичными соединениями. Это делает невозможным сброс отработанных термальных вод в поверхностные водоёмы. Поэтому для отработанную воду необходимо закачивать обратно в подземный водоносный горизонт. Кроме того, некоторые учёные-сейсмологи выступают против любого вмешательства в глубокие слои Земли, утверждая, что это может спровоцировать землетрясения.

Грозовая энергетика

Грозовая энергетика - это способ использования энергии путём поимки и перенаправления энергии молний в электросеть. Компания Alternative Energy Holdings 11 октября 2006 года объявила о создании прототипа модели, которая может использовать энергию молнии.Преимущество: Молния является чистой энергией, и её применение будет не толькоустранять многочисленные экологические опасности, но также будет значительно уменьшать дороговизнупроизводства энергии.

Проблемы в грозовой энергетике

Молнии являются очень ненадёжным источником энергии, так как заранее нельзя предугадать, где и когда случится гроза.

Ещё одна проблема грозовой энергетики состоит в том, что разряд молнии длится доли секунд и, как следствие, его энергию нужно запасать очень быстро. Для этого потребуются мощные и дорогостоящиеконденсаторы. Также могут применяться различные колебательные системы с контурами второго и третьего рода, где можно согласовывать нагрузку с внутренним сопротивлением генератора.

Молния является сложным электрическим процессом и делится на несколько разновидностей: отрицательные - накапливающиеся в нижней части облака и положительные - собирающиеся в верхней части облака. Это тоже надо учитывать при создании молниевой фермы

Энергия приливов и отливов

Несоизмеримо более мощным источником водных потоков являются приливы и отливы. Подсчитано, что потенциально приливы и отливы могут дать человечеству примерно 70 млн. миллиардов киловатт-часов в год. Для сравнения: это примерно столько же, сколько способны дать разведанные запасы каменного и бурого угля, вместе взятые;

Проекты приливных гидроэлектростанций детально разработаны в инженерном отношении, экспериментально опробованы в нескольких странах, в том числе и у нас, на Кольском полуострове. Продумана даже стратегия оптимальной эксплуатации ПЭС: накапливать воду в водохранилище за плотиной во время приливов и расходовать ее на производство электроэнергии, когда наступает “пик потребления” в единых энергосистемах, ослабляя тем самым нагрузку на другие электростанции.

Биотопливо

Жидкое: биоэтанол.

Разработка технологий производства биоэтанола второго поколения открывает новые перспективы на рынках топлива, произведённого из дешёвого биологического сырья, и кроме того, позволяет решать проблемы утилизации отходов. Используемый в качестве добавки этанол способствует более полному сгоранию бензина и на 30 % сокращает выбросы угарного газа и токсичных веществ, на 25 % − выбросы летучих органических соединений. Таким образом, его использование снижает техногенную нагрузку на окружающую среду.Преимущество биогаза по сравнению с природным заключается в том, что он может быть произведён из местного сырья даже в самом отдалённом населённом пункте, т.е. позволяет обеспечить топливом регионы труднодоступные и высокозатратные с точки зрения организации газотранспортной инфраструктуры. Кроме того, выпуск биогаза даёт возможность решить серьёзную для аграрного и пищевого производства проблему утилизации отходов, при переработке которых помимо биогаза получают тепло и органические удобрения. Кроме того, использование биогаза снижает выброс парниковых газов

Твёрдое: древесные отходы и биомасса (щепа, гранулы (топливные пеллеты) из древесины, лузги, соломы и т. п., топливные брикеты)Одно из важнейших преимуществ гранул − высокая и постоянная насыпная плотность, правильная форма и однородная консистенция, позволяющая относительно легко использовать их для отопления и транспортировать на большие расстояния.

Газообразное: HYPERLINK "https://ru.wikipedia.org/wiki/%D0%91%D0%B8%D0%BE%D0%B3%D0%B0%D0%B7" \o "Биогаз" биогаз, синтез-газ.

Преимущество биогаза по сравнению с природным заключается в том, что он может быть произведён из местного сырья даже в самом отдалённом населённом пункте, т.е. позволяет обеспечить топливом регионы труднодоступные и высокозатратные с точки зрения организации газотранспортной инфраструктуры. Кроме того, выпуск биогаза даёт возможность решить серьёзную для аграрного и пищевого производства проблему утилизации отходов, при переработке которых помимо биогаза получают тепло и органические удобрения. Кроме того, использование биогаза снижает выброс парниковых газов.

  • Разделы сайта